基于Spark的图像检索方法研究
Reasearch on Image Retrieval Method Based on Spark
随着图像处理技术的快速发展,如何高效地从海量图像中检索出用户需要的图像成为亟待解决的问题。传统的图像检索方法,存在现有图像底层视觉特征对实际语义信息的缺失的问题,本文针对这个问题,通过使用两次聚类来提取颜色信息的方法,在传统的Hu不变矩和局部颜色特征中融入了一些语义信息,由形状和颜色信息构成基于聚类分析的多层索引,提出了基于多特征的改进的图像检索方法。同时,与单机串行处理相比,Spark集群并行化实验证明了该改进方法在处理海量图像时检索结果具有更高的效率,从而表明该图像检索方法能在实际的图像检索中高效运行。
With the rapid development of image processing technology, how to retrieve the image from the mass images efficiently, becomes a problem that needs to be solved quickly. The existing low-level features of images, are lack of semantic information in traditional image retrieval. To solve this problem, a method to extract color information by using twice clustering, was put forward to improve image retrieval. In this method, some semantic information was added to the traditional Hu movement invariants, and multi index based on clustering analysis by shape and the color information compose of multi features. At the same time, compared with serial processing, Spark cluster parallel experiments show that the improved method of search results is more efficiently in dealing with massive images, which indicates that the image retrieval method in practical image retrieval efficiency.
郭双双、彭冬磊、邹承明
计算技术、计算机技术电子技术应用
Spark图像检索多特征并行化
Sparkimage RetrievalMulti featureparallel computing
郭双双,彭冬磊,邹承明.基于Spark的图像检索方法研究[EB/OL].(2016-12-27)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201612-521.点此复制
评论