|国家预印本平台
首页|Inverse boundary value problem for Schr\"odinger equation in cylindrical domain by partial boundary data

Inverse boundary value problem for Schr\"odinger equation in cylindrical domain by partial boundary data

Inverse boundary value problem for Schr\"odinger equation in cylindrical domain by partial boundary data

来源:Arxiv_logoArxiv
英文摘要

Let $\Omega\subset \Bbb R^2$ be a bounded domain with $\partial\Omega\in C^\infty$ and $L$ be a positive number. For a three dimensional cylindrical domain $Q=\Omega\times (0,L)$, we obtain some uniqueness result of determining a complex-valued potential for the Schr\"odinger equation from partial Cauchy data when Dirichlet data vanish on a subboundary $(\partial\Omega\setminus\widetilde{\Gamma}) \times [0,L]$ and the corresponding Neumann data are observed on $\widetilde\Gamma \times [0,L]$, where $\widetilde\Gamma$ is an arbitrary fixed open set of $\partial\Omega.$

Oleg Yu Imanuvilov、Masahiro Yamamoto

10.1088/0266-5611/29/4/045002

数学物理学

Oleg Yu Imanuvilov,Masahiro Yamamoto.Inverse boundary value problem for Schr\"odinger equation in cylindrical domain by partial boundary data[EB/OL].(2012-11-06)[2025-08-02].https://arxiv.org/abs/1211.1419.点此复制

评论