耦合Schrodinger系统变号解的渐进行为
The asymptotic behavior of nodal solutions for two coupled Schr"{o}dinger system
我们研究了下列耦合Schrodinger系统变号解的渐进性质 e egin{cases}- arepsilon^2Deltau+lambda_1u=mu_1u^3+ eta uv^2,quad &xin Omega, onumber\- arepsilon^2Delta v+lambda_2v=mu_2v^3+ eta vu^2,quad &xinOmega, onumber\u=v=0,quad &xinpartialOmega, onumberend{cases}ee 其中$Omegasubset mathbb{R}^N$$(Nleq 3)$ 是有光滑边界的有界区域,$lambda_1,,$$lambda_2,,$ $mu_1$, $ mu_2>0$,$ eta<0$。当$ arepsilon ightarrow 0$时,证明了半变号解(即,解的一个分支变号,另一个分支大于零)变号的分支有唯一的正和负尖峰, 它们都收敛到$Omega$中不同的点,不变号的分支有唯一的正尖峰,它也收敛到一点。 我们同样也证明了当$arepsilon ightarrow 0$时,这些最大值和最小值点与边界的距离除以$arepsilon$是发散的。
We study theasymptotic behavior of nodal solution for the coupled nonlinear Schr"{o}dinger system e egin{cases}- arepsilon^2Deltau+lambda_1u=mu_1u^3+ eta uv^2,quad &xin Omega, onumber\- arepsilon^2Delta v+lambda_2v=mu_2v^3+ eta vu^2,quad &xinOmega, onumber\u=v=0,quad &xinpartialOmega, onumberend{cases} ee where $Omegasubset mathbb{R}^N$$(Nleq 3)$ is a smooth and bounded domain, $lambda_1,$$lambda_2,$ $mu_1$, $ mu_2>0$ and $ eta<0$. It is shown that the semi-nodal solution $(u, v)$, that is, one component changes sign and another one is positive, has exactly onepositive and one negative peaks, which converge to two distinct points of $Omega$ as $ arepsilon ightarrow 0,$ and another component has exactly onepositive peak, which converge to a point of $Omega$ as$ arepsilon ightarrow 0.$ We also prove the distances between the local maximum points, the local minimum points and the boundary of $Omega$ divided by $ arepsilon$ diverge.
杨俊、王友军
数学物理学
耦合非线性Schrodinger系统变号解渐进行为
coupled nonlinear Schr"{o}dinger systemnodal solutionthe asymptotic behavior
杨俊,王友军.耦合Schrodinger系统变号解的渐进行为[EB/OL].(2016-01-20)[2025-08-26].http://www.paper.edu.cn/releasepaper/content/201601-415.点此复制
评论