|国家预印本平台
首页|Working memory capacity of crows and monkeys arises from similar neuronal computations

Working memory capacity of crows and monkeys arises from similar neuronal computations

Working memory capacity of crows and monkeys arises from similar neuronal computations

来源:bioRxiv_logobioRxiv
英文摘要

Abstract Complex cognition relies on flexible working memory, which is severely limited in its capacity. The neuronal computations underlying these capacity limits have been extensively studied in humans and in monkeys, resulting in competing theoretical models. We probed the working memory capacity of crows (Corvus corone) in a change detection task, developed for monkeys (Macaca mulatta), while we performed extracellular recordings of the prefrontal-like area nidopallium caudolaterale. We found that neuronal encoding and maintenance of information were affected by item load, in a way that is virtually identical to results obtained from monkey prefrontal cortex. Contemporary neurophysiological models of working memory employ divisive normalization as an important mechanism that may result in the capacity limitation. As these models are usually conceptualized and tested in an exclusively mammalian context, it remains unclear if they fully capture a general concept of working memory or if they are restricted to the mammalian neocortex. Here we report that carrion crows and macaque monkeys share divisive normalization as a neuronal computation that is in line with mammalian models. This indicates that computational models of working memory developed in the mammalian cortex can also apply to non-cortical associative brain regions of birds.

Rose Jonas、Fongaro Erica、Balakhonov Dmitry、Nieder Andreas、Hahn Lukas Alexander

Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University BochumNeural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University BochumNeural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University BochumAnimal Physiology, Institute of Neurobiology, University of T¨1bingenNeural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum

10.1101/2021.08.17.456603

动物学生理学生物科学现状、生物科学发展

Divisive normalizationcomputation principleworking memory capacitycapacity limitationsingle-cell recordingsNCLPFCcomparative cognitionflexible model of WM

Rose Jonas,Fongaro Erica,Balakhonov Dmitry,Nieder Andreas,Hahn Lukas Alexander.Working memory capacity of crows and monkeys arises from similar neuronal computations[EB/OL].(2025-03-28)[2025-05-25].https://www.biorxiv.org/content/10.1101/2021.08.17.456603.点此复制

评论