|国家预印本平台
首页|基于稀疏近似的特征选择及人脸识别

基于稀疏近似的特征选择及人脸识别

Feature Selection via Sparse Approximation for Face Recognition

中文摘要英文摘要

近年来人脸识别研究中往往采用大量的过完备局部特征进行识别,此时特征选择已经成为一个不可缺少的关键环节。论文基于正则化的框架,提取了一种可训练的用于人脸识别的特征选择方法。该方法在最小均方误差准则的基础上增加稀疏惩罚项,从而将特征选择问题转化为稀疏近似优化问题,该优化问题可采用贪婪法或凸松弛法进行求解。基于相同的框架,论文提出了一种称为稀疏Ho-Kashyap过程的新方法,该方法同时进行特征选取和求解最小均方误差准则的最优间隔矢量。该方法被用于选取最具有鉴别能力的Gabor特征,在标准人脸库上的实验结果验证了其有效性和优越性。

Inspired by biological vision systems, the over-complete localfeatures with huge cardinality are increasingly used for facerecognition during the last decades. Accordingly, feature selectionhas become more and more important and plays a critical role forface data description and recognition. In the paper, atrainable feature selection algorithm based on the regularized framefor face recognition is proposed. By enforcing a sparsity penalty term on theminimum squared error (MSE) criterion, the feature selectionproblem is casted into a combinatorial emph{sparse approximation} problem,which can be solved by greedy methods or convex relaxation methods.Moreover, based on the same frame, a emph{sparse}Ho-Kashyap (HK) procedure is proposed to obtain simultaneously the optimalemph{sparse} solution and the corresponding emph{margin} vector ofthe MSE criterion. The proposed methods are used for selecting themost informative Gabor features of face images for recognition andthe experimental results on benchmark face databases demonstrate theeffectiveness of the proposed methods.

梁毅雄、向遥、王磊、邹北骥

电子技术应用

模式识别人脸识别特征选择稀疏近似Ho-Kashyap过程

Pattern RecognitionFace recognitionFeature SelectionSparse ApproximationHo-Kashyap procedure

梁毅雄,向遥,王磊,邹北骥.基于稀疏近似的特征选择及人脸识别[EB/OL].(2012-02-22)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201202-855.点此复制

评论