基于SA-BP算法的ECT图像重建机制的研究与实现
Research on SA-BP Algorithms of Image Reconstruction Mechanism for Electrical Capacitance Tomography
本文的主要研究内容是基于BP神经网络算法的ECT图像重建机制,针对BP神经网络在训练过程中存在收敛速度慢和容易陷入局部极小值等问题,又提出了SA-BP优化策略。首先,对于标准BP算法,在权值调整公式中加入动量项并且利用自适应方法调节学习率,可以在训练过程中减少震荡幅度,提高收敛速度;其次,当BP神经网络在训练的过程中陷入局部极小值时,利用模拟退火算法指导神经网络的训练以跳出局部极小,最终找到全局最小,从而实现图像重建。仿真实验结果表明,利用SA-BP算法在图像重建过程中能得到较精确的结果,为ECT图像重建算法的研究提供了一个新的思路。
In this paper, an Electrical Capacitance Tomography (ECT) image reconstruction mechanism based on SA-BP algorithm is presented to avoid the disadvantages that slow convergence of BP neural network and reaching local minimum easily during the training. Firstly, adding a momentum in the weights adjustment formula and regulating learning rate by using adaptive method, the convergence rate is improved. Secondly, when neural network reach local minimum, the introduction of simulated annealing method can guide the neural network to jump out of local minimum and find the global minimum. Simulation experimental results show that the SA-BP algorithm can provide high quality results and this new algorithm presents a feasible and effective way to research on image reconstruction for ECT.
王莉莉、陈德运、周婧
电子技术应用
ECT图像重建BP神经网络模拟退火算法SA-BP算法
Electrical Capacitance Tomographyimage reconstructionBP neural networksimulated annealing algorithmSA-BP algorithm
王莉莉,陈德运,周婧.基于SA-BP算法的ECT图像重建机制的研究与实现[EB/OL].(2009-09-28)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200909-776.点此复制
评论