|国家预印本平台
首页|基于改进贝叶斯优化算法的CNN超参数优化方法

基于改进贝叶斯优化算法的CNN超参数优化方法

中文摘要英文摘要

NN框架中,如何对其模型的超参数进行自动化获取一直是一个重要问题。提出一种基于改进的贝叶斯优化算法的CNN超参数优化方法。该方法使用改进的汤普森采样方法作为采集函数,利用改进的马尔可夫链蒙特卡洛算法加速训练高斯代理模型。该方法可以在超参数空间不同的CNN框架下进行超参数优化。利用CIFAR-10、MRBI和SVHN测试集对算法进行性能测试,实验结果表明,改进后的CNN超参数优化算法比同类超参数优化算法具有更好的性能。

In the framework of convolutional neural network (CNN) , how to obtain the hyper-parameters of its model automatically is an important and pressing research topic. In this paper, we proposed a hyper-parameter optimization method of CNN based on improved Bayesian optimization algorithm. This method uses the improved Thompson sampling method as the acquisition function. The improved Markov Chain Monte Carlo algorithm is used to accelerate the Gaussian surrogate model. The proposed method can be used to optimize hyper-parameters in frameworks of CNN with different hyper-parameter space. The performance of the algorithm was tested by using these testing sets: CIFAR-10, MRBI and SVHN. The experimental results show that the improved hyper-parameter optimization algorithm of CNN has better performance than the other algorithms.

邓帅

10.12074/201804.02171V1

计算技术、计算机技术

贝叶斯优化卷积神经网络高斯过程超参数优化

邓帅.基于改进贝叶斯优化算法的CNN超参数优化方法[EB/OL].(2018-04-17)[2025-08-02].https://chinaxiv.org/abs/201804.02171.点此复制

评论