一种基于多视图融合的恶意代码检测算法
Malware Detection Algorithm Based on Multi-view Fusion
恶意程序是目前信息安全领域所关注的一个重要问题. 截至到目前为止,虽然众多科研工作者已经提出了多种基于API调用序列的恶意程序检测算法来识别恶意程序并已经取得了很大的进展,但集成学习领域的发展为设计更好的检测算法提供了可能。本文基于恶意程序在针对网络、文件等所进行的API操作方面会表现出一定的局部性,提出了一种新的恶意程序检测算法。在整个算法中,我们首先将程序运行期间的所产生的API序列分成7个子序列。然后,利用每个子序列来训练出一个分类器来区分恶意程序与良性的程序。最后,利用BKS算法来融合他们的判别结果以得出最终的结论。实验证明本文所提出的方法可以得到更好的检测结果。
One of the major problems concerning information assurance is malicious code. In order to detect them, many existing run-time intrusion or malware detection techniques utilize information available in Application Programming Interface (API) call sequences to discriminate between benign and malicious processes. Although some great progresses have been made, the new research results of ensemble learning make it possible to design better malware detection algorithm. This paper present a novel approach of detecting malwares using API call sequences. Basing on the fact that the API call sequences of a software show local property when doing network, file IO and other operations, we first divide the API call sequences of a malware into seven subsequences, and then use each subsequence to build a classification model. After these building models are used to classify software, their outputs are combined by using BKS and the final fusion results will be used to label whether a software is malicious or not. Experiments show that our algorithm can detect known malware effectively.
班涛、王风宇、林丰波、袁启侠、郭山清
计算技术、计算机技术
计算机网络恶意程序检测PI调用序列多视图融合BKS 算法
omputer NetworkMalware DetectionAPI Call SequencesMulti-view FusionBKS Algorithm
班涛,王风宇,林丰波,袁启侠,郭山清.一种基于多视图融合的恶意代码检测算法[EB/OL].(2013-01-10)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201301-494.点此复制
评论