|国家预印本平台
首页|一种基于双支持向量机决策树的多分类算法

一种基于双支持向量机决策树的多分类算法

multi-classification algorithm based on twin support vector machine decision tree

中文摘要英文摘要

双支持向量机(TSVM)比起传统支持向量机能够有效减少训练时间,而决策树在解决多分类问题具有良好的性能,本文结合双支持向量机与决策树方法并利用类间相异度构造出一种优化的双支持向量机决策树(DT-TSVM)算法。最后利用UCI数据集上的实例证明,这种双支持向量机决策树不仅有较高的分类准确率还能有较短的训练时间。

he twin support vector machine (TSVM) can effectively reduce the training time compared with the traditional support vector machine (SVM).While the SVM decision tree has a good performance in solving the multi-class classification .In this paper, the TSVM and the decision tree method are combined, and we use the dissimilarity between classes to construct an optimized TSVM decision tree (DT-TSVM). Finally the experiment based on the UCI data sets prove that our DT-TSVM not only has a higher classification accuracy rate but also has shorter training time.

刘琼荪、唐明

计算技术、计算机技术

多分类 双支持向量机 决策树 类间相异度

multi-class classification twin support vector machine decision tree dissimilarity

刘琼荪,唐明.一种基于双支持向量机决策树的多分类算法[EB/OL].(2015-01-23)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201501-421.点此复制

评论