|国家预印本平台
首页|基于决策树与神经网络结合的滚动轴承故障诊断方法

基于决策树与神经网络结合的滚动轴承故障诊断方法

rolling bearing fault diagnosis method based on decision tree and neural network

中文摘要英文摘要

提出了一种基于决策树与神经网络方法结合的改进滚动轴承故障诊断方法。该方法对滚动轴承振动信号进行EMD分解,使用决策树对分解信号进行故障预测,然后使用属性融合神经网络对决策树预测结果进行学习,将决策树故障特征融合到神经网络分类器中。结果表明,该方法具有更高的故障识别率,可以准确、有效地识别滚动轴承的故障类型。

his paper proposes an improved fault diagnosis method based on the fusion of decision tree and neural network. This method performs EMD decomposition on the rolling bearing vibration signal, uses a decision tree to predict the failure of the decomposition signal, and then uses the attribute fusion neural network to learn the decision tree prediction results, and integrates the fault features of the decision tree into the neural network classifier. The results show that this method has a higher fault recognition rate and can accurately and effectively identify the type of faults in rolling bearings.

李佳、朱宏波、王晨升、陈浩哲、贾智涵、杨光

机械运行、机械维修自动化技术、自动化技术设备计算技术、计算机技术

决策树神经网络故障诊断

decision treeneural networkfault diagnosis

李佳,朱宏波,王晨升,陈浩哲,贾智涵,杨光.基于决策树与神经网络结合的滚动轴承故障诊断方法[EB/OL].(2018-07-20)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201807-48.点此复制

评论