|国家预印本平台
首页|基于编码器空间信息优化的眼底图像分割

基于编码器空间信息优化的眼底图像分割

Retinal vessel image segmentation based on encoder spatial information optimization

中文摘要英文摘要

为了缓解当前国家医疗卫生体系存在的医疗效率不高等问题,发展智能医疗、建立智能医疗体系成为必然的选择。医学图像分割作为各种医学图像处理任务的基础,对于智能医疗的落地具有十分重要的意义。然而由于医学图像分割任务中存在着可训练数据集较小、模态多、对比度较低且噪声干扰较大等问题,目前使用深度学习算法对医学图像进行分割的精度还不能达到临床要求。因此,本文针对眼底视网膜血管分割任务,在UNet++的基础上展开研究并针对网络当前的不足提出了编码器特征提取能力优化方法:通过在编码器中引入Transformer结构补充全局上下文信息,并通过在DRIVE数据集上的消融实验和对比实验证明了所提方法可以提升眼底视网膜血管分割效果,为医学图像分割临床使用奠定了基础。

In order to solve the low medical efficiency and other problems existing in the current national medical and health system, the development of intelligent medicine and the establishment of intelligent medical system has become an inevitable choice. As the basis of various medical image processing tasks, medical image segmentation is of great significance for the realization of intelligent medicine. However, due to the problems of small datasets, multiple models, low contrast and large noise interference in the task of medical image segmentation, the accuracy of medical image segmentation using deep learning algorithm cannot meet the clinical requirements. Therefore, this paper focused on two mainstream segmentation tasks, namely, retinal vessel segmentation and liver segmentation, modified the structure of UNet++, proposed an optimization method for the feature extraction ability of the encoder. The Transformer structure was introduced into the encoder to supplement the global context information and the ablation experiments and comparative experiments on the DRIVE dataset show that the proposed method can effectively improve the ability of retinal vessel segmentation. The method not only improves the segmentation accuracy of the network, but also lays a foundation for the clinical use of medical image segmentation.

谢颜蔚、苏菲、孟竹

眼科学医学研究方法计算技术、计算机技术

医学图像分割ransformer-convUNet++ransformer

medical image segmentationTransformer-convUNet++Transformer

谢颜蔚,苏菲,孟竹.基于编码器空间信息优化的眼底图像分割[EB/OL].(2022-03-08)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202203-90.点此复制

评论