|国家预印本平台
首页|形状记忆合金层合梁的非线性振动和分岔分析

形状记忆合金层合梁的非线性振动和分岔分析

Nolinear vibration and bifurcation of shape memory alloys laminated beam

中文摘要英文摘要

研究了两端简支形状记忆合金(SMA)层合梁在简谐激励下的幅频响应和分岔。本文首先建立了SMA层合梁连续体振动方程。由于采用了分段线性本构方程来表示形状记忆合金伪弹性的应力-应变关系,导致SMA层的本构特征和梁轴向位置的相关性,所以在偏微分方程中保留了SMA的线性常数对轴向位置的导数项。在用迦辽金法对该偏微分方程进行单模态离散时,充分考虑了由于SMA双线性本构关系的分段线性引起梁振动方程关于时间和空间的非光滑性,通过在不同变形阶段对梁轴向进行分段积分,得出了由形状记忆合金引起的广义回复力和变形之间的分段非线性关系,仍构成了一个封闭的滞后环,但不再保持SMA材料的双线性滞后本构关系分段线性的特点。然后用平均法求解了单自由度系统的幅频响应方程。为讨论激励幅值和基体刚度变化对幅频响应特性的影响,引入约束分岔理论方法,求解系统中可能存在的定性不同的幅频响应曲线的类型。

mplitude-frequency response and bifurcation analysis of simple supported beam laminated with shape memory alloy (SMA) films under harmonic excitation are studied in this paper. The partial differential equation is deduced at first, of which discontinuous on space and non-smooth on time properties caused by piecewise linear characteristic of the bilinear constitutive model of superelastic SMA is pointed out, subsequently, the piecewise nonlinear hysteretic relationship between generalized restoring force caused by SMA layers and the beam deformation is deduced by subsection integration method along the axial direction of beam while the equation is discretized as the beam vibrating under the first mode by galerkin's method. Then amplitude-frequency response equation is solved by average method for the singe-freedom system. In order to investigate the influence of amplitude of harmonic excitation and elastic modulus of matrix on the amplitude-frequency response, the constrained bifurcation theory is introduced to access the different qualitative kinds of amplitude-frequency response curves.

吴志强、张振华

材料科学工程基础科学

形状记忆合金伪弹性简支梁幅频响应约束分岔

shape memory alloyssuperelasticsimple supported beamamplitude-frequency responseconstrained bifurcation

吴志强,张振华.形状记忆合金层合梁的非线性振动和分岔分析[EB/OL].(2011-02-23)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/201102-619.点此复制

评论