基于稀疏表示的图像超分辨率算法研究
On the Algorithm of Sparse-Representation-Based Image Super-Resolution
图像超分辨率是指从场景的一幅或者多幅低分辨率图像中重构出一幅高分辨率图像。基于稀疏表示的超分辨率技术是目前较为先进的算法,但是它在重构速度以及重构质量上仍存在不足之处。本文将聚类思想引入到联合字典训练中,从而训练出结构更为紧凑并且维数更低的字典对;同时提出了自适应块大小的图像重构方法,即针对不同复杂度的图像使用不同的块大小来进行重构,从而使得不同复杂度的图像在重构时每一块中都包含了适量的用于重构的信息。实验表明,所提方法能够同时提高图像的重构质量和重构速度。
he purpose of image super-resolution (SR) is to reconstruction a high-resolution image from one or several low-resolution images of the same scene. Sparse-representation-based image SR is an advanced algorithm at present, but it also has shortcomings in reconstruction quality and speed. To train a dictionary with more compact structure and lower dimensions, the clustering is introduced into the joint dictionary training in this paper. Meanwhile an image reconstruction method based on adaptive block size which using different block size for reconstruction according to the images complexity is proposed. It can improve the quality of reconstruction as every block contains appropriate information for reconstruction. The results show that the proposed method can improve the quality and speed of image reconstruction.
陈亚东、李小娜、章权兵
电子技术应用
图像超分辨率、稀疏表示、聚类、自适应块
Image super-resolution Sparse representation Cluster Adaptive block
陈亚东,李小娜,章权兵.基于稀疏表示的图像超分辨率算法研究[EB/OL].(2014-08-28)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201408-275.点此复制
评论