基于遗传算法-BP神经网络的突出强度预测
Based on Genetic Algorithm-BP neural networks highlight the strength prediction
煤与瓦斯突出强度的预测对研究煤与瓦斯突出现、保证矿井安全正常生产有着重要意义,本文提出采用遗传算法结合BP神经网络的模型来预测突出强度,采用遗传算法对BP神经网络的权重和阀值进行优化,将优化好的权重与阀值作用于网络进行训练,直至性能函数符合要求。实际计算表明,该模型有较好的预测精度,且克服了普通BP神经网络训练时间长、收敛速度慢的缺点,在已知瓦斯膨胀能和煤层厚度的前提下可以用该模型对突出强度进行预测。
oal and gas intensity forecasting of coal and gas is, to ensure that mine safety normal production had important implications, this article proposes using genetic algorithms and BP neural network models to predict the outburst, the use of genetic algorithm on BP neural network‘s weights and thresholds, will optimize better weight and threshold on a network for training until performance functions to meet the requirements. The actual calculation means that this model has the better forecast accuracy, and to overcome the General BP neural network training is long, the shortcomings of the slow convergence, in known gas expansion and seam thickness on the premise that you can use this model to make predictions on the outburst.
陈见行、董合祥、韩志婷
矿业工程理论与方法论矿山安全、矿山劳动保护
理论预测遗传算法BP神经网络突出强度预测
theoretical predictiongenetic algorithmbp neural networkintensity of outburstprediction
陈见行,董合祥,韩志婷.基于遗传算法-BP神经网络的突出强度预测[EB/OL].(2010-07-30)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201007-522.点此复制
评论