|国家预印本平台
首页|一种用户偏好的美学图像推荐方法

一种用户偏好的美学图像推荐方法

中文摘要英文摘要

随着互联网与多媒体拍照技术的飞速发展与普及,使得各种各样的图像资源数量急剧膨胀。如何在众多的图像信息资源中快速、有效地寻找用户最喜欢的图像,成为了图像推荐领域需要解决的一个重要问题。针对这个问题,提出了一种用户偏好的美学图像推荐方法,通过使用深度卷积神经网络提取图像的深层特征,并经过SVMRank后得到一个图像排序得分,同时使用手工标记的图像美学因素(如色调法、图像组合规则、清晰度以及简洁性)计算并得到图像的美学特征,得到一个美学得分,最后进行加权交叉验证得到一个令用户满意的推荐结果。通过实验表明该算法为一种有效的美学偏好推荐方法。

With the rapid development and popularization of the Internet and multimedia camera technology, the number of various image resources has expanded dramatically. How to quickly and effectively find the user's favorite image in many image information resources has become an important issue that needs to be solved in the field of image recommendation. Aiming at this problem, this paper proposed a user-appreciated aesthetic image recommendation method, which used the deep convolutional neural network to extract the deep features of the image, and obtained an image sorting score after SVMRank, while using hand-marked image aesthetic factors (such as : hue method, image combination rule, definition and simplicity) Calculate and obtain the aesthetic characteristics of the image, get an aesthetic score, and finally perform weighted cross-validation to obtain a recommendation result that is satisfactory to the user. Experiments show that the algorithm is an effective recommendation method for aesthetic preferences.

苏士美、许永波、樊隆庆

10.12074/201810.00064V1

电子技术应用

深度卷积神经网络美学规则用户偏好

苏士美,许永波,樊隆庆.一种用户偏好的美学图像推荐方法[EB/OL].(2018-10-11)[2025-08-16].https://chinaxiv.org/abs/201810.00064.点此复制

评论