|国家预印本平台
首页|千兆图像序列的多目标跟踪

千兆图像序列的多目标跟踪

Multi-object tracking on giga image sequences

中文摘要英文摘要

千兆图像序列多目标跟踪是一个具有挑战性的计算机视觉任务,GigaVision Challenges为该项目研究提供了来自真实场景中千兆相机采集的图像序列数据。本文基于DeepSORT框架改进并实现了针对千兆图像序列的多目标跟踪方法,多策略地解决千兆图像序列多目标跟踪中的新问题。为解决千兆图像尺寸过大问题,采用多尺度图像裁剪的对象检测策略;设计双阈值缩放改进轨迹关联过程;提出利用加权框融合算法抑制图像块边界对象检测框的策略;改进对象与轨迹关联过程中的特征匹配顺序,以解决千兆图像序列低帧率问题。该方法在2022年千兆视觉评测的多目标跟踪任务中排名8/28。

Multi-object tracking of giga image sequences is a challenging computer vision task, and the GigaVision Challenges provide image data from giga cameras in a real-world scene for the project. In this paper, a multi-target tracking method for giga image sequences is implemented based on the DeepSORT framework, and the new problems in multi-target tracking of gigab image sequences are solved in multiple strategies. In order to solve the problem of excessive giga image size, an object detection strategy with multi-scale image cropping is adopted. The double-threshold scaling improved trajectory association process is designed. A strategy of using weighted box fusion algorithm to suppress the object detection frame of image block boundary is proposed. The feature matching order in the process of object and trajectory association is improved to solve the problem of low frame rate of giga image sequences. The method ranked 8/28 in the multi-target tracking task of the 2022 GigaVision Challenges.

肖禹超、赵衍运

计算技术、计算机技术

千兆视觉多目标跟踪深度学习

giga visionmulti-object trackingdeep learning

肖禹超,赵衍运.千兆图像序列的多目标跟踪[EB/OL].(2024-03-06)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/202403-62.点此复制

评论