|国家预印本平台
首页|Zero-energy states of N = 4 SYM on T^3: S-duality and the mapping class group

Zero-energy states of N = 4 SYM on T^3: S-duality and the mapping class group

Zero-energy states of N = 4 SYM on T^3: S-duality and the mapping class group

来源:Arxiv_logoArxiv
英文摘要

We continue our studies of the low-energy spectrum of N=4 super-Yang-Mills theory on a spatial three-torus. In two previous papers, we computed the spectrum of normalizable zero-energy states for all choices of gauge group and all values of the electric and magnetic 't Hooft fluxes, and checked its invariance under the SL_2(Z) S-duality group. In this paper, we refine the analysis by also decomposing the space of bound states into irreducible unitary representations of the SL_3(Z) mapping class group of the three-torus. We perform a detailed study of the S-dual pairs of theories with gauge groups Spin(2n+1) and Sp(2n). The predictions of S-duality (which commutes with the mapping class group) are fulfilled as expected, but the proof requires some surprisingly intricate combinatorial infinite product identities.

Mans Henningson、Niclas Wyllard

10.1088/1126-6708/2008/04/066

物理学

Mans Henningson,Niclas Wyllard.Zero-energy states of N = 4 SYM on T^3: S-duality and the mapping class group[EB/OL].(2008-02-05)[2025-04-27].https://arxiv.org/abs/0802.0660.点此复制

评论