|国家预印本平台
首页|基于自注意力机制的神经网络多模光纤图像传输

基于自注意力机制的神经网络多模光纤图像传输

Neural Network Multi-mode Fiber Image Transmission Based on Self Attention Mechanism

中文摘要英文摘要

我们通过基于多头自注意力的神经网络来实现高准确度的多模光纤二值图像传输。与一般的基于CNN的Real-valued ANN或者U-net方法,该方法利用了滑动窗口实现的多头的自注意力机制,在多模光纤图像传输中实现以更少的参数量和特征提取模块中更大的感受野,可以实现更稳定的图像传输。我们搭建光学实验平台采集多模多模光纤传输数据,并实现二值图像的高效率高准确度传输,传输的准确率在5000大小Mnist数据集上达到94.32%。我们的发现为鲁棒的多模光纤图像传输方案铺平道路,该方法有潜力引用于多种条件苛刻的图像传输,这为可能的高精度图像传输任务铺平道路,如多模光纤内窥镜,或其他远程多模光纤图像传输应用

multi-mode fiber binary image transmission with high accuracy is realized by using multi-head self-attention based neural network. Compared with the common CNN-based Real-valued ANN or U-net methods, the method makes use of the multi-head self-attention mechanism implemented by sliding Windows to achieve a more stable image transmission with fewer parameters and a wider receptive field in the feature extraction module. We built an optical experimental platform to collect multi-mode and multi-mode optical fiber transmission data, and realized the high efficiency and high accuracy of binary image transmission, with the transmission accuracy reaching 94.32% on the 5000 size Mnist dataset. Our findings pave the way for robust multimode fiber image transmission schemes that have the potential to be referenced in a variety of highly conditional image transmission, paving the way for possible high-precision image transmission tasks, such as multimode fiber endoscopy, or other remote multimode fiber image transmission applications

吴国华、孙镛

光电子技术通信

光学散射介质成像多模光纤图像传输深度学习自注意力

OpticsScattering medium imagingMultimode optical fiber image transmissionDeep learningself attention

吴国华,孙镛.基于自注意力机制的神经网络多模光纤图像传输[EB/OL].(2023-04-04)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202304-34.点此复制

评论