用双线性法和Wronskian技术求(3+1)维变系数KP方程的精确解
Exact Solutions to a (3+1)-Dimensional Variable-Coefficient Kadomtsev-Petviashvilli Equation via the Bilinear Method and Wronskian Technique
通过截断Painlevé展开到常数项,得变换把3+1维变系数KP方程化为Hirota双线性形式,基于双线性形式,由小参数展开法求得孤波解,并给出相应的图形分析。构建了Wronskian形式的精确解,并通过直接代人双线性形式给出证明。
By truncating the Painlevé expansion at the constant level term, the Hirota bilinear form is obtained for a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation. Based on its bilinear form, solitary-wave solutions are constructed via the \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"-expansion method and the corresponding graphical analysis is given. Furthermore, the exact solution in the Wronskian form is presented and proved by direct substitution into the bilinear equation.
耿涛、李丽莉、田播、朱宏武、许韬、张成、吕兴
物理学
(3+1)维变系数KP方程Wronskian解双线性精确解
(3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equationWronskian solutionBilinear formExact solution
耿涛,李丽莉,田播,朱宏武,许韬,张成,吕兴.用双线性法和Wronskian技术求(3+1)维变系数KP方程的精确解[EB/OL].(2008-09-17)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200809-478.点此复制
评论