|国家预印本平台
首页|二元 $S$-$lambda$ 基函数和 $S$-$lambda$ 曲面

二元 $S$-$lambda$ 基函数和 $S$-$lambda$ 曲面

Bivariate $S$-$lambda$ basis functions and $S$-$lambda$ Surface Patches

中文摘要英文摘要

本文通过生成函数和变换因子技术构造了两类二元的 slambda 基函数, 张量积的 slambda 基函数和 三角 slambda 基函数。这两种二元基函数拥有许多重要的性质,比如非负性、单位分解性、线性无关性等。张量积 slambda 基函数的框架提供了一种统一方式处理若干种著名的张量积基函数,比如张量积的 Bernstein 基函数、张量积 Poisson 基函数和其他新的张量积基函数。三角 slambda 基函数的框架包含了三角 Bernstein 基函数,有理三角 Bernstein 基函数以及其他新的三角基函数。进一步,通过这两类基函数,我们分别构造了对应的两类 slambda 曲面。这两类 slambda 曲面拥有曲面造型的重要性质,比如仿射不变性和凸包性等。

In this paper two kinds of bivariate $S$-$lambda$ basis functions, tensor product $S$-$lambda$ basis functions and triangular $S$-$lambda$ basis functions, are constructed by means of the technique of generating functions and transformation factors. These two kinds of bivariate $S$-$lambda$ basis functions have lots of important properties, such as non-negativity, partition of unity, linear independence and so on. The framework of the tensor product $S$-$lambda$ basis functions provides a unified scheme for dealing with several kinds of tensor product basis functions, such as the tensor product Bernstein basis functions, the tensor product Poisson basis functions and some other new tensor product basis functions. The framework of the triangular $S$-$lambda$ surface basis functions includes the triangular Bernstein basis functions, the rational triangular Bernstein basis functions and some other new triangular basis functions. Moreover, the corresponding two kinds of $S$-$lambda$ surfaces are constructed by means of these two kinds of basis functions, respectively. These two kinds of $S$-$lambda$ surface patches have the important properties of surface modeling, such as affine invariance, convex hull property and so on.

周国荣、范飞龙、曾晓明

数学

张量积S-lambda基函数三角S-lambda基函数生成函数变换因子S-lambda曲面片

tensor product $S$-$lambda$ basis functions triangular $S$-$lambda$ basis functions generating functions transformation factors $S$-$lambda$ surface patches.

周国荣,范飞龙,曾晓明.二元 $S$-$lambda$ 基函数和 $S$-$lambda$ 曲面[EB/OL].(2014-04-18)[2025-06-14].http://www.paper.edu.cn/releasepaper/content/201404-244.点此复制

评论