结合条件随机场与神经网络的语义分割方法综述
Semantic segmentation methods that combines CRF and CNN: A review
语义分割是自然场景图像理解与分析的重要基础,要求算法对图像中对象、对象之间的相互联系、图像局部和全局上下文信息有着充分的理解,基于图像空间上下文信息、结构信息、颜色纹理位置信息对图像进行建模,实现语义层面上的细粒度分割。考虑到分割问题对相邻位置一致性的要求,当前的领先方法大多采用结合深度卷积神经网络和传统概率图模型的策略。根据结合方式的区别,这些方法可以被分为两类:一类将图模型和神经网络当作两个独立的模块,分别调整图模型和神经网络的参数,使用图模型对神经网络的输出做后处理,使得语义分割的结果更加平滑、局部更加一致;另一类将图模型整合到神经网络中,实现了端到端的语义分割系统,在学习神经网络的参数的同时,调整图模型的参数,共同优化损失函数,使得整个语义分割系统更具实用性。
Semantic segmentation is the fundamental process of natural image understanding and analysis. It requires that the applied algorithm has a thorough understanding of objects inside the image, relationships of these objects, local and global context information of the image. Moreover, these algorithms should model the image on the basis of image context, structure, color, texture, position of pixels, super-pixels or the whole image in order to achieve fine-level segmentation. Considering the consistency constraint for the image segmentation task, most state-of-the-art methods employ the strategy of fusioning deep convolutional neural networks and probability graphical models. Depending on the fusion strategies, these methods could be classified into two categories. The first series of methods treat the graphical model and the neural network as separate modules, and adjust their parameters individually. They propose to use graphical models to post-process the output of the neural network for finer segmentation results. The other series of methods incorporate graphical models into neural networks, and alter their parameters collectively. These end-to-end methods could easily be plugged into existing systems and achieve better results on most datasets than the first series of methods.
王勇涛、周亚峰
计算技术、计算机技术
模式识别语义分割条件随机场卷积神经网络
pattern recognition semantic segmentation conditional random fields convolutional neural networks
王勇涛,周亚峰.结合条件随机场与神经网络的语义分割方法综述[EB/OL].(2017-05-12)[2025-08-06].http://www.paper.edu.cn/releasepaper/content/201705-846.点此复制
评论