|国家预印本平台
首页|多传感器观测下带乘性噪声的最优卡尔曼滤波

多传感器观测下带乘性噪声的最优卡尔曼滤波

Optimal Kalman Filtering of Multi-Sensor System with Multiplicative Noise

中文摘要英文摘要

研究了多传感器观测下带乘性噪声的最优卡尔曼滤波问题。为方便乘性噪声的处理,给出了随机矩阵的协方差计算方法。通过把乘性噪声转化为加性噪声后,基于数据融合的统一线性模型得到带乘性噪声的最优卡尔曼滤波算法。本算法可用于不确定性系统的鲁棒滤波,与同类算法相比,本算法不需要对不确定问题的结构作假设,不需要参数选择技巧,算法简单,且仿真计算表明本算法滤波性能优于同类算法[8]。

his paper deals with the optimal Kalman filter of multi-sensor system with multiplicative noise. In order to convert multiplicative noise into adding noise, how to compute covariance of random matrix is given. By converting multiplicative noise into adding noise, we can obtain directly optimal fusion estimate of multi-sensor system with multiplicative noise based on unified linear fusion model. The proposed algorithm can be applicable for robust Kalman filter of uncertain systems, and compared with similar ones, the algorithm has no restriction with uncertain structure and no parameters to be determined. Simulation results show the proposed filter performs better than the robust Kalman filter in [8] when the parameter uncertainty exists.

王志胜

计算技术、计算机技术

多传感器卡尔曼滤波乘性噪声不确定系统鲁棒滤波

multi-sensorKalman filteringmultiplicative noiseuncertain systemrobust filtering

王志胜.多传感器观测下带乘性噪声的最优卡尔曼滤波[EB/OL].(2006-02-28)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/200602-286.点此复制

评论