|国家预印本平台
首页|一种基于多模态的社交媒体情感分析方法

一种基于多模态的社交媒体情感分析方法

multimodal based sentiment analysis method for social media

中文摘要英文摘要

情感分析在经济、娱乐等多个领域都有着重要的研究意义以及使用价值。为了充分发掘社交媒体中文字与图片的互补特性以及图片之间的相互联系,本文提出了一种基于图片与文本的多模态融合方法。该方法使用3DCNN提取一组图片之间的相互联系,使用Word2vec与LSTM提取文本中的特征,并设计了一种多模态融合方法对两种特征进行融合以得到情感分类结果。该方法在微博数据集上进行了实验。实验结果显示,该方法优于现有的情感分析方法,准确率及其他指标均有所提升。

Sentiment analysis is of great significance and value in many fields such as economy and entertainment.In order to make fully use of the complementarity between the text and the image in social media and the correlation between images, this paper proposes a multimodal fusion method based on image and text.In this method, 3DCNN is used to extract the correlation between a group of images, Word2vec and LSTM are used to extract the features from the text, and a multimodal fusion method is designed to fuse them to get the result.The method was tested on the Weibo dataset.The experimental results show that the accuracy and other indicators of this method are improved compared with the existing sentiment analysis methods.

田野、杜洋

信息产业经济计算技术、计算机技术通信

计算机技术情感分析多模态3DCNNLSTM

omputer Applied Technologysentiment analysismultimodal3DCNNLSTM

田野,杜洋.一种基于多模态的社交媒体情感分析方法[EB/OL].(2021-03-31)[2025-04-27].http://www.paper.edu.cn/releasepaper/content/202103-400.点此复制

评论