没有4,6,8,9圈平面图的3-可选择性
On 3-choosability of plane graphs without 4-,6-,8-or 9-cycle
Steinberg提出是否每一个没有4和5圈的平面图都是3-可染的。Borodin及Sanders和Zhao分别证明了任意没有长为4到9圈平面图是3-可染的。本文证明了没有4,6,8,9圈的平面图是3-可选择的。
Steinberg asked whether every planar graphs without 4 and 5 cycles is 3-colorable.Borodin and independently Sanders and Zhao ,showed that every planar graphwithout any cycle of length between 4 and 9 is 3-colorable.In this paper we improve this result by showing that every planar graph without any cycle of length 4,6,8 or 9 is 3-choosable.
吴桂月
数学
平面图,圈,选择性
planar graphcyclechoosability
吴桂月.没有4,6,8,9圈平面图的3-可选择性[EB/OL].(2007-10-15)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200710-206.点此复制
评论