混合Nash均衡策略的随机化模拟
Simulation of Randomizing the Strategies of Mixed Nash Equilibria
对两人完全信息静态博弈而言,其混合Nash均衡在理论上是纯策略空间上的概率分布. 但实践上,局中人很难按照这个概率分布随机化自己的策略。主要原因是:人们不知如何将自己的策略随机化。为了提高混合Nash均衡的实践可行性,本文采用蒙特卡洛模拟方法。首先将局中人的策略转化为数字并解出混合Nash均衡对应的概率分布;然后,按照"混合Nash均衡"分别为两个局中人定制随机行动变量;最后基于蒙特卡洛方法模拟出随机数并动态地展示给局中人,局中人直接根据数字选择对应的策略即可。理论上可以证明:依据该方法随机采取某策略的概率值与混合纳什均衡对应的概率值是一致的。恋人博弈的算例表明:本文设计的方法,可以辅助局中人简单地实现按照混合Nash均衡随机化自己的策略选择,而且吻合率达到84.8%以上。
For a two-person complete information static game, any mixed Nash equilibrium is a probability distribution on the strategy space in theory. But, in practice, it is difficult for players to randomize their strategies according to the probability distribution.The main reason is people do not know how to randomize their own strategies. In order to improve the practical feasibility of mixed Nash equilibria, this paper adopts the method of Monte Carlo. Firstly, transform the strategies into numbers and solve the probabilites distribution of mixed Nash equilibria. Secondly, design two random variables which respectively obey a specific distribution law for each player. Lastly, simulate the random numbers which are dynamically shown to the players and players just chose the corresponding strategy to the number. It can be proven theoretically the probability value, according to which the strategies are randomized, is consistent with the probability of the mixed Nash equilibria. A numerical example of the sex battle game show that this paper can help the player simply randomize their own strategy choices according to the mixed Nash equilibrium, and the coincident rate is above 94% .
牛晓梦、赵娟、龚谊承
数学
对策论混合Nash均衡策略蒙特卡洛模拟
Game TheoryMixed Nash EquilibriumStrategyMonte Carlo Simulation
牛晓梦,赵娟,龚谊承.混合Nash均衡策略的随机化模拟[EB/OL].(2017-03-06)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/201703-64.点此复制
评论