|国家预印本平台
首页|距离选择在超分辨率图像字典优化中的应用

距离选择在超分辨率图像字典优化中的应用

istance selection for dictionary optimization of image super-resolution

中文摘要英文摘要

基于学习的超分辨率图像重建方法所得到的超分辨率图像质量,很大程度上依赖于字典是否包含与输入低分辨率图像相关的细节信息,相关信息越多所得超分辨率图像质量越好。本文,对于每一幅输入低分辨率图像,通过SIFT特征匹配找出最相似的训练图像来训练字典。一个距离度量集合(包括: 中值距离,欧式距离,调和距离和几何距离)用来进行SIFT特征匹配,得到的结果比只用欧式距离更好。每一个标记图像使用度量集合中的距离,分别选择训练图像,重构四个超分辨率图像。通过比较超分辨率图得到标记图像对应的最优距离。将所有标记图像按照最优距离分为四组。本文使用Bag-of-words方法量化输入低分辨率图像和标记图像,通过找到与输入低分辨率图像最相似的标记图像,来获得输入图像的最优距离。实验证明,本文的方法能得到较高的最优距离击中率,选择的最优距离比传统的欧式距离更适合输入图像。

he quality of Learning-based super-resolution (SR) largely depends on whether the dictionary includes rich details which are strongly similar to the input image. In this paper, for each input image, we optimize the dictionary by selecting the most similar training images based on the SIFT feature. A rich set of candidate distance metrics, such as Median distance, Euclidean distance, Harmonic distance and Geometric distance, are explored to match the SIFT feature, which can provide more accurate matching result than only using Euclidean distance. The optimal distance of each target image can be selected by comparing the four super-resolution images, which are recovered respectively by using the element of distance set to select the training image. According the optimal distance metric, all target images are divided into four groups. We propose the bag-of-words (BOW) model for quantize the input image and target images, and then select the optimal distance of input image by finding the most similar target image. Experimental results demonstrate that our method can obtain the high hit rate and the select distance is more adaptive for input image than the traditional Euclidean distance.

张建光、韩亚洪

计算技术、计算机技术电子技术应用

超分辨率字典SIFT距离度量Bag-of-words

Super-resolutionDictionarySIFTDistance metricBag-of-words

张建光,韩亚洪.距离选择在超分辨率图像字典优化中的应用[EB/OL].(2016-05-20)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201605-905.点此复制

评论