VIO中的信息稀疏化研究
Research of Information Sparsification on VIO
视觉惯性里程(VIO)是一种利用视觉和惯导传感器进行位姿估计的一种同步定位与建图(SLAM)方法,其问题的规模随着时间线性增长;为了限制求解该问题的规模,人们在VIO中引入基于因子图的增量式优化和边缘化策略的滑动窗口算法。然而,边缘化策略导致了VIO的稀疏性消失,使得该问题的时间复杂度增加;为了恢复边缘化后VIO的稀疏性,在本文中,我们将信息稀疏化扩展到滑动窗口算法中,并提出了一种由非线性测量因子组成的新颖的稀疏因子图结构,我们在最小化Kullback-Leibler散度的条件下恢复稀疏因子以近似连续边缘化产生稠密边缘化先验。在滑动窗口中引入稀疏化后,边缘化因子转变为稀疏的非线性因子,这些非线性因子能够在后续优化中重新线性化,从而显著降低了累积线性化误差和计算复杂度。我们在真实的数据集上实现了上述算法,并与其他先进算法进行了比较,证明了所提出算法的有效性和精确性。
Visual Inertial Odometry (VIO) is a simultaneous localization and mapping (SLAM) method using vision and inertial navigation sensors for pose estimation. The scale of the problem increases linearly with time. In order to limit the scale of VIO problem, sliding window algorithm based on incremental optimization of factor graph and marginalization strategy is introduced. However, the marginalization strategy leads to the disappearance of the sparsity of VIO, which increases the time complexity of the problem. In order to restore the sparsity of VIO after marginalization, in this paper, we extend the information sparsification to sliding window algorithm, and propose a novel sparse factor graph structure composed of nonlinear measurement factors. The sparse factorsare restored to approximate the dense marginal prior induced by successive marginalization in terms of minimizing Kullback-Leibler Divergence. By introducing sparsification into the sliding window, the marginal factors are transformed into sparse nonlinear factors, which can be re-linearized in the subsequent optimization, thus significantly reducing the accumulated linearization error and computational complexity. We implement the proposed algorithm on real datasets and compare it with other state-of-art algorithms to prove the effectiveness and accuracy.
马吉祥、谢勇
计算技术、计算机技术电子技术应用自动化技术、自动化技术设备
SLAM,信息稀疏化,因子图,优化
SLAMInformation sparsificationFactor graphOptimization
马吉祥,谢勇.VIO中的信息稀疏化研究[EB/OL].(2021-04-21)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/202104-186.点此复制
评论