基于扩展级联LSH的快速影像特征匹配
Fast Image Matching Algorithm Based on Extended Cascade LSH
针对传统的基于SIFT(scale invariant feature transform)的影像匹配算法实时性较差,效率不高的问题,提出一种基于扩展的级联位置敏感散列(extended cascade LSH)影像匹配算法。首先,通过提出的数据空间浮动二分哈希搜索算法,构建一种比原始LSH具有更高位置敏感性的投影空间实现对高维特征数据的分类,使查询过程仅在高相似度集合中进行从而提高检索速度。然后,在各类特征集合内部进行二次随机投影散列,将SIFT特征映射到具有更好局部敏感性的高维海明空间,采用汉明距离和欧式距离相结合的测度方法,完成匹配特征对的快速查找和精确计算。实验结果表明扩展的级联LSH图像匹配算法在匹配精度不逊于BBF和LSH的基础上,匹配速度明显提高。
In order to realize high efficient and effective image matching with the most appealing descriptor SIFT(scale invariant feature transform), An extended cascade locality sensitive hashing(LSH) matching algorithm is proposed to accelerate the image matching. First of all, a new data space floating dichotomy based hash algorithm is designed to build a high sensitive projection space, with which we achieve the accurate classification of high dimensional data thus we only need to conduct the query process within a collection of feature data with high similarity. And then, a random projection hashing is adopted to map the SIFT features into a higher dimensional Hamming space, through which the final precise calculation is conducted by combination of Hamming and Euclidean distance measurement. The experimental results indicate the matching process has been speeded up significantly while the precision is comparable to the traditional BBF and LSH based method.
杨凯、陈丽芳、刘渊
电子技术应用计算技术、计算机技术遥感技术
图像匹配SIFT级联LSH二分哈希汉明距离
image matchingSIFTcascade LSHdichotomy hashHamming distance
杨凯,陈丽芳,刘渊.基于扩展级联LSH的快速影像特征匹配[EB/OL].(2015-05-05)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/201505-40.点此复制
评论