镁合金交流等离子体表面处理膜层厚度的建模
Modeling about Coating Thickness in AC Plasma Surface Treatment for Magnesium alloy
本文采用人工神经网络方法对AZ91D镁合金交流等离子体表面处理工艺进行了多变量复杂过程的建模研究。结果表明:人工神经网络技术可以很好地建立AZ91D镁合金交流等离子体表面处理膜层厚度与氟化钾浓度、氢氧化钾浓度、调压器输出电压、处理时间和处理液温度之间的关系模型,输出值与期望实测值的最大误差仅为2.13%,为AZ91D镁合金电化学处理研究的发展奠定了坚实的基础。
In this paper, the modeling of a multi-variable complicated process in AZ91D magnesium alloy AC plasma surface treatment was carried out by artificial neural networks method. The results show that: The artificial neural networks technique can establish the relationship model between the coating thickness and the treatment parameters such as concentration of KF, concentration of KOH, voltage, treatment time and temperature of treatment solution perfectly. The maximum error between the desired test value and the output value is only 2.13%. This research lays a firm foundation for the development of AZ91D magnesium alloy eletrochemical treatment.
林文光、卢小鹏、张鹏、杜云慧、徐丽
电工材料金属学、热处理
表面处理人工神经网络关系模型
Surface treatmentArtificial neural networksModel
林文光,卢小鹏,张鹏,杜云慧,徐丽.镁合金交流等离子体表面处理膜层厚度的建模[EB/OL].(2011-10-28)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201110-316.点此复制
评论