|国家预印本平台
首页|基于GPU的并行关联规则挖掘算法的设计与实现

基于GPU的并行关联规则挖掘算法的设计与实现

GPU-based Association Rules Mining Algorithm

中文摘要英文摘要

关联规则是数据挖掘的一个重要课题,用于从海量的数据中提取出有用的数据项之间的相关性,从而更好地指导策略的制定。这篇论文引入了不同于传统的数据存储和运算方式,利用GPU的多核多并发的高计算能力,实现了基于GPU的并行关联规则挖掘算法。与一般的关联规则挖掘算法相比,基于GPU的并行关联规则挖掘算法由于利用了GPU的高并行度和高存储带宽,在性能有了很大的提升。

ssociation rules mining is an important topic of data mining, and it is a popular and well researched method for discovering interesting relations between variables in large databases, then helps make better decision of strategy. This paper introduces new data storage and computing methods, and the implementation of GPU based parallel association rules mining algorithm utilizing the highly parallel computing capacity of GPU. Compared with normal association rules mining algorithms, GPU based algorithm has a significant improvement in performance because of GPU's high degree of parallelism and high memory bandwidth.

高占春、张旭

计算技术、计算机技术

关联规则挖掘GPU并行计算

ssociation rules miningGPUParallel computing

高占春,张旭.基于GPU的并行关联规则挖掘算法的设计与实现[EB/OL].(2014-12-12)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201412-330.点此复制

评论