|国家预印本平台
首页|Continual Learning for Image-Based Camera Localization

Continual Learning for Image-Based Camera Localization

Continual Learning for Image-Based Camera Localization

来源:Arxiv_logoArxiv
英文摘要

For several emerging technologies such as augmented reality, autonomous driving and robotics, visual localization is a critical component. Directly regressing camera pose/3D scene coordinates from the input image using deep neural networks has shown great potential. However, such methods assume a stationary data distribution with all scenes simultaneously available during training. In this paper, we approach the problem of visual localization in a continual learning setup -- whereby the model is trained on scenes in an incremental manner. Our results show that similar to the classification domain, non-stationary data induces catastrophic forgetting in deep networks for visual localization. To address this issue, a strong baseline based on storing and replaying images from a fixed buffer is proposed. Furthermore, we propose a new sampling method based on coverage score (Buff-CS) that adapts the existing sampling strategies in the buffering process to the problem of visual localization. Results demonstrate consistent improvements over standard buffering methods on two challenging datasets -- 7Scenes, 12Scenes, and also 19Scenes by combining the former scenes.

Juho Kannala、Iaroslav Melekhov、Shuzhe Wang、Zakaria Laskar、Xiaotian Li

计算技术、计算机技术自动化技术、自动化技术设备

Juho Kannala,Iaroslav Melekhov,Shuzhe Wang,Zakaria Laskar,Xiaotian Li.Continual Learning for Image-Based Camera Localization[EB/OL].(2021-08-20)[2025-05-07].https://arxiv.org/abs/2108.09112.点此复制

评论