稀疏最小二乘支持向量机及其应用
pplication of Sparse Least Squares Support Vector Machine
提出基于特征向量选择(FVS)的稀疏最小二乘支持向量机(SLS-SVM)模型,解决最小二乘支持向量机(LS-SVM)稀疏化问题。首先,采用FVS在特征空间构建特征向量子集,对训练样本进行稀疏线性重构。然后,将稀疏化的特征向量作为支持向量,从而实现对LS-SVM稀疏化建模。最后,将所提出的SLS-SVM模型进行了弓网系统的仿真实验。结果表明,与标准LS-SVM和传统SVM模型比较, SLS-SVM模型在取得高预报精度的同时,实现支持向量的高度稀疏化,模型预报速度得到加快。
Based on feature vector selection (FVS) method, a new model of sparse least squares support vector machine (SLS-SVM) is proposed to solve the sparseness problem of least squares support vector machine (LS-SVM). Firstly, a subset of feature vectors is defined in feature space to reconstruct all the training samples linearly. Then, the sparse feature vectors are used as support vectors, and the SLS-SVM model is obtained. Finally, simulation experiment of pantograph-catenary system is carried out. The simulation results show that compared with basic LS-SVM and traditional SVM, SLS-SVM not only has good forecast precision, but also achieves highly sparse support vectors, for which the prediction speed is accelerated.
陈立勇、衷路生
计算技术、计算机技术自动化技术、自动化技术设备
特征向量稀疏支持向量弓网系统
feature vectorsparsesupport vectorpantograph-catenary system
陈立勇,衷路生.稀疏最小二乘支持向量机及其应用[EB/OL].(2014-03-04)[2025-08-05].http://www.paper.edu.cn/releasepaper/content/201403-97.点此复制
评论