基于理想解和熵的不确定语言多属性决策方法
Method for uncertain linguistic multiple attribute decision making based on ideal solution and entropy
研究了属性权重完全未知、属性值以不确定语言变量形式给出的不确定语言多属性决策问题。首先引入了不确定语言变量的运算法则,以及不确定语言变量之间比较的可能度公式,给出了不确定语言变量间的距离的概念。针对属性权重完全未知的情形,利用所有决策方案与理想决策方案偏差最小化和属性权系数的随机性,给出了一种不确定语言变量多属性决策方法。该方法利用优化方法建立数学模型,以所有决策方案与理想决策方案偏差最小化和权系数信息熵最大化为优化目标,用拉格朗日乘子法给出模型的最优解,得到属性的权系数。该方法能够结合决策者的主观意志和客观事实,精确确定各属性的权系数。然后利用不确定语言加权平均(ULWA)算子,对不确定语言决策信息进行加权集成,并利用可能度公式构造可能度矩阵(互补判断矩阵),继而利用互补判断矩阵排序公式对决策方案进行排序和择优。最后进行了实例分析。
In this paper, we study the multiple attribute decision making problems, in which the information about attribute weights is completely unknown and the attribute values and preference information on alternatives take the form of uncertain linguistic variables. We introduce the operational laws of uncertain linguistic variables and a formula of possibility degree for the comparison between uncertain linguistic variables, and then define the concept of deviation degree between uncertain linguistic variables. A new method of uncertain linguistic multiple attribute decision-making is presented. Applying the deviation of decision alternatives and ideal decision alternatives and the randomicity of attribute weight coefficients, a new mathematical programming model is established. The objective is to minimize the deviation of decision alternatives and ideal decision alternatives and to maximize the entropy of weights of each attribute. The optimal solution is the best attribute weight coefficients, which is solved by the Lagrange multiple method. And the exact and reliable decision results combining the subjectivity and the facts are obtained. Then we utilize the uncertain linguistic weighting average (ULWA) operator to aggregate the uncertain linguistic variables corresponding to each alternative, and utilize the formula of possibility degree to construct a possibility degree matrix (or called complementary judgement matrix), and then utilize the priority formula of complementary judgement matrix to rank the alternatives and select the most desirable one(s). Finally, an illustrative example is shown to highlight the procedure of the proposed algorithm at the end of this paper.
卫贵武
计算技术、计算机技术
多属性决策不确定语言变量ULWA算子信息熵偏差
multiple attribute decision makinguncertain linguistic variablesuncertain linguistic weighted averaging (ULWA) operatorentropydeviation
卫贵武.基于理想解和熵的不确定语言多属性决策方法[EB/OL].(2007-04-04)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/200704-94.点此复制
评论