|国家预印本平台
首页|融合粒子群算法与蚁群算法对XML概率查询策略的改进

融合粒子群算法与蚁群算法对XML概率查询策略的改进

Improvement on XML Probabilistic Query Combing PSO and ACO

中文摘要英文摘要

粒子群算法具有快速随机的全局搜索能力,但无法利用反馈信息,而蚁群算法通过信息素的累积和更新收敛于最优路径上,具有分布式并行全局搜索能力,但初期信息素匮乏,求解速度慢;本文根据以上算法的特征,采用启发式方法,结合XML半结构化的特点,将粒子算法与蚁群算法融入于XML概率查询上,并进行相应的改进,采用粒子群算法快速生成信息素分布,利用蚁群算法精确求解,达到优势互补,提高数据查询的范围和收敛的效率,仿真实验表明这种融合方法具有更好的查询效果。

PSO(Particle Swarm Optimization) has the ability of doing a global searching quickly and stochastically, but it can’t make use of the feedback information; ACO (Ant Colony Optimization)converges on the best path through pheromone accumulation and renewal. It has the ability of parallel processing and global searching, but there is little pheromone on the path early and the speed to solution is slow. This paper combines PSO with ACO to improve XML probabilistic query, which adopts PSO to make pheromone distribution and make use of ASO to get a value accurately, as a result it develops enough advantages of the two algorithms, and the data query range is widen and convergence efficiency is increased. Through Simulation experiments, it shows a preferable result to XML query.

刘波、杨路明、谢东、雷刚跃

计算技术、计算机技术

粒子群算法,蚁群算法,信息素,杂交算子,XML概率查询

PSO ACO Pheromone Crossover Operator XML Probabilistic Query

刘波,杨路明,谢东,雷刚跃.融合粒子群算法与蚁群算法对XML概率查询策略的改进[EB/OL].(2007-02-27)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200702-234.点此复制

评论