基于图的流形排序的多层级融合显著性目标检测
Multi-level Combination Saliency Object Detection via Graph-based Manifold Ranking
针对基于图的流形排序的显著性目标检测方法在突出显著性物体和抑制背景方面的不足,提出一种基于图的流形排序的多层级融合显著性检测方法。为充分利用图像信息,采用过分割算法分割原始图像,根据分割区域的数目由粗到细分割原图形成多层级过分割图像。对每一层级图像采用基于图的流形排序方法生成初始显著图,再通过提前训练好的融合器获得相应的层级最优权重,多层级融合得到最终显著图。训练融合器时采用二次规划的方法,该过程是在MSRA-10K数据库上进行的,同时在ECSSD数据库和CSSD数据库上与8种流形算法按照四种评价指标进行比较分析。实验结果表明,所提出的方法相较于其它8种流行方法在不同数据库上表现出较高的检测准确率,提高了显著性目标检测的性能。
In this paper, we form the saliency map by a multi-level combination approach using graph-based manifold ranking method as the foundation. This method aims to overcome the defects that the merely graph-based manifold ranking method can not do well in highlighting the salient objects uniformly and suppressing the background effectively. We execute over-segmentation algorithm for each input image, and in order to make full use of the image information and cues, we segment the input image into multilevels from the coarsest to the finest according to the number of segmented regions. And for each level, graph-based manifold ranking algorithm is used to generate the initial saliency map. Then we obtain the optimal weight of each level from the trained combiner to make a multi-level combination to get the final saliency map. The combiner is trained using quadratic programming algorithm on the MSRA-10K database. In the experiment, we compare our method with the other eight state-of-the-art methods in terms of four evaluation criteria. The experimental results demonstrate that the proposed method achieves consistent and favorable performance against the eight state-of-the-art methods on different databases.?????
李翠萍、赵迪、陈振学
计算技术、计算机技术
流形排序多层级融合显著性过分割二次规划
Manifold RankingMulti-level CombinationSaliencyOver-segmentationQuadratic Programming
李翠萍,赵迪,陈振学.基于图的流形排序的多层级融合显著性目标检测[EB/OL].(2017-05-22)[2025-08-19].http://www.paper.edu.cn/releasepaper/content/201705-1244.点此复制
评论