|国家预印本平台
首页|Role of Hydrogen in the spin-orbital-entangled quantum liquid candidate H$_3$LiIr$_2$O$_6$

Role of Hydrogen in the spin-orbital-entangled quantum liquid candidate H$_3$LiIr$_2$O$_6$

Role of Hydrogen in the spin-orbital-entangled quantum liquid candidate H$_3$LiIr$_2$O$_6$

来源:Arxiv_logoArxiv
英文摘要

Motivated by recent reports of H$_3$LiIr$_2$O$_6$ as a spin-orbital-entangled quantum liquid, we investigate via a combination of density functional theory and non-perturbative exact diagonalization the microscopic nature of its magnetic interactions. We find that while the interlayer O-H-O bond geometry strongly affects the local magnetic couplings, these bonds are likely to remain symmetrical due to large zero-point fluctuations of the H positions. In this case, the estimated magnetic model lies close to the classical tricritical point between ferromagnetic, zigzag and incommensurate spiral orders, what may contribute to the lack of magnetic ordering. However, we also find that substitution of H by D (deuterium) as well as disorder-induced inhomogeneities destabilize the O-H/D-O bonds modifying strongly the local magnetic couplings. These results suggest that the magnetic response in H$_3$LiIr$_2$O$_6$ is likely sensitive to both the stoichiometry and microstructure of the samples and emphasize the importance of a careful treatment of hydrogen for similar systems.

Ying Li、Roser Valenti、Stephen M. Winter

10.1103/PhysRevLett.121.247202

物理学晶体学

Ying Li,Roser Valenti,Stephen M. Winter.Role of Hydrogen in the spin-orbital-entangled quantum liquid candidate H$_3$LiIr$_2$O$_6$[EB/OL].(2018-07-05)[2025-08-08].https://arxiv.org/abs/1807.02124.点此复制

评论