基于增益最小的语音盲分离算法
Blind Source Separation Based on Minimum gain
本文提出的基于增益最小的语音盲分离算法是一种新的低计算复杂度的瞬时线性混叠信号的盲分离算法,该算法把源信号和噪声信号协方差矩阵的函数表示成广义特征值问题,通过广义特征值问题求解分离矩阵不需要任何迭代运算。计算机模拟实验证明,基于增益最小盲分离算法能够分离线性混合的超高斯和亚高斯源信号,并且可以有效地分离语音信号。
blind source separation based on minimum gain ia a new signal separation algorithm of the instantaneous linear mixing signal which has low computational complexity. This covariance matrix function of source signal and noise signal is expressed as a generalized eigenvalue problem. The algorithm do not need any iteration when solve separation matrix through generalized eigenvalue problem. Computer simulation proves that the algorithm can separate a mixture of super-Gaussian and sub-Gaussian source signals, and it can separate speech signal effectively.
徐宏、张雪英
通信
盲源分离广义特征值滑动平均增益最小
gainblind source separationGeneralizedeigenvalueMoving average
徐宏,张雪英.基于增益最小的语音盲分离算法[EB/OL].(2011-01-26)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/201101-1308.点此复制
评论