一类四阶差分方程的多重周期解
Multiple periodic solutions for a class of fourth-orderdifference equations
本文研究一类四阶差分方程的多重周期解。 我们在恰当的空间上构造合适的变分结构,应用多重临界点定理给出四阶差分方程 egin{eqnarray*}Delta^{2}(r_{n-2}Delta^{2}x_{n-2})+f(n,x_{n})=0, ninmathbb{Z},end{eqnarray*}多重周期解存在性的充分条件,获得其两个多重周期解存在定理。其中, $Delta$是前差分算子,$Delta x_{n}=x_{n+1}-x_{n},Delta^{2}x_{n}=Delta(Delta x_{n})$.
In this paper, we consider the multiplicity of periodic solutionsfor a class of fourth-order difference equations. We establish some sufficientconditions on the multiplicity of periodic solutions for the fourth-order difference equations egin{eqnarray*}Delta^{2}(r_{n-2}Delta^{2}x_{n-2})+f(n,x_{n})=0, ninmathbb{Z},end{eqnarray*}where $Delta$ is the forwarddifference operator $Delta x_{n}=x_{n+1}-x_{n},Delta^{2}x_{n}=Delta(Delta x_{n})$. Byestablishing a proper variational set, two multiplicity results areobtained by means of somemultiple critical points theorems.
周见文、王艳宁
数学
差分方程周期解临界点
ifference Equations Periodic solutionsCritical points
周见文,王艳宁.一类四阶差分方程的多重周期解[EB/OL].(2015-11-13)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201511-188.点此复制
评论