|国家预印本平台
首页|基于复合分位数的半参数模型平均边际回归

基于复合分位数的半参数模型平均边际回归

Semiparametric model averaging marginal regression based on composite quantiles

中文摘要英文摘要

在本文中,考虑了复合分位数回归用于半参数模型平均边际回归。首先,对于数据的预测问题,本文使用局部线性复合分位数回归得到边际回归函数的估计。其次,本文基于惩罚复合分位数回归,结合自适应LASSO惩罚项,来估计并选择一维边际回归模型的权重,用于估计联合回归函数,该方法可以将充分小的权重值压缩为零,因此可以识别出不显著的边际回归函数。进一步,本文在一定条件下,证明了估计量的渐近正态性和估计权重的稀疏性。最后,通过数值模拟,展示了所提出方法的优越性能。

his paper considers the composite quantile regression for semiparametric model averaging marginal regression. Firstly,this paperuses semiparametric model averaging of marginal regression based on local linear composite quantile regression to estimate the marginal regression function. Moreover, this paper estimates and selects weights for one-dimensional marginal regression models by combining penalized composite quantile regression with an adaptive LASSO penalty function, which is then used to estimate the joint regression function. This paper further demonstrates the asymptotic normality of the estimator and the sparsity of the weight estimates under certain conditions. Finally, this paper shows the superior performance of our proposed method through numerical simulations.

雷渝川、黎雅莲

数学

半参数方法边际回归模型平均复合分位数回归自适应LASSO

Semiparametric MethodMarginal regressionModel averagingComposite quantile regressionAdaptive LASSO

雷渝川,黎雅莲.基于复合分位数的半参数模型平均边际回归[EB/OL].(2023-04-04)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/202304-39.点此复制

评论