基于HDFS的大规模监控视频的细粒度检索
Fine-grained Retrieval for Massive Surveillance Video on HDFS
Hadoop分布式文件系统(HDFS)被广泛用于存储大规模监控视频,然而目前并没有基于HDFS的监控视频细粒度检索方法。在本文中,我们借鉴了HDFS小文件存储的经验,提出一种按秒检索存储在HDFS的视频数据的方法。首先,服务器按秒接收视频片段,然后服务器端将视频片段合并后上传到HDFS指定目录。我们设计的HDFS存储路径和合并文件可以避免额外的内存索引。实验结果表明我们的方法可以满足大规模监控视频按时间检索的性能要求。
Hadoop Distributed File System (HDFS) is widely used to store massive surveillance video currently. However, there are no solutions for retrieving fine-grained surveillance video on HDFS. In this paper, we propose a novel method to retrieve surveillance video by second on HDFS. We draw lessons from small files storage problem in HDFS. Firstly we receive video segments from IP cameras. Then we merge them together and upload the merged files to HDFS. The merged file and the directory of HDFS are well designed to avoid extra in-memory index for file mapping. Experiments show that our approach can retrieve massive surveillance video on HDFS by second efficiently.
李文生、方瑞
计算技术、计算机技术自动化技术、自动化技术设备
计算机应用HDFS视频检索监控视频
omputer Application TechnologyHDFSVideo RetrievalSurveillance Video
李文生,方瑞.基于HDFS的大规模监控视频的细粒度检索[EB/OL].(2017-12-04)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201712-26.点此复制
评论