|国家预印本平台
首页|基于深度卷积神经网络的大学英语四级成绩早期预警

基于深度卷积神经网络的大学英语四级成绩早期预警

n Early Warning Model of CET-4 Scores Based on Deep Convolution Neural Network

中文摘要英文摘要

大学英语四级考试成绩早期预警模型易受学生日常行为模式差异干扰,影响预测精度。以某智慧教学平台上与大学英语四级考试直接相关的四级题型模块化学习成绩作为数据来源,建立模块化学习灰度图片数据库,同时将深度学习引入早期预警,形成基于深度卷积神经网络的大学英语四级成绩预警模型,对学生是否能在大学英语四级考试中取得预期成绩进行前期预测。验证结果表明,深度卷积神经网络预测模型相较于现有的预测模型具有更高的预测精度,可得到更早的最佳干预时间,有利于教师更好地对风险学生进行干预,提高学生大学英语四级考试成绩,提升英语语言应用能力。

 The early warning models of CET-4 scores are easily disturbed by the differences in students daily behavior patterns, affecting prediction accuracy. A gray image database of students modular learning is established using the CET-4 modular learning scores on a platform, and deep learning is integrated with early warning to form an early warning model of CET-4 scores based on deep convolution neural networks. An early prediction was made on whether students can achieve the expected results in CET-4. The results show that the prediction model based on the deep convolution neural networks has higher accuracy than the existing prediction models and can get an earlier optimal intervention time. It benefits teachers intervention with relevant students and can help improve their CET4 scores and English language competency.

教育计算技术、计算机技术信息传播、知识传播

全国大学英语四级考试早期预警深度卷积神经网络预测精度最佳干预时间

National College English Test Band 4Early warningDeep convolution neural networkPrediction accuracyOptimal intervention time

.基于深度卷积神经网络的大学英语四级成绩早期预警[EB/OL].(2024-06-28)[2025-08-16].https://chinaxiv.org/abs/202406.00412.点此复制

评论