BP神经网络在焉耆盆地农田排水量估算中的应用
Using BP Neural Network to Estimate the Farmland Drainage of Yanqi Basin, Xinjiang
本文利用BP神经网络技术对焉耆盆地农田排水量进行预测。利用灰色关联度分析确定了排水量与各影响因素的关系,选取了对排水量影响最大的5个因素作为BP网络的输入,利用均匀设计方法,确定了最优的神经网络结构。估算结果表明利用BP神经网络可以准确的估算农田排水量,最大相对误差仅为-2.45%。
We try to use BP neural network to estimate the farm drainage in the Yanqi Basin. The correlation between drainage and the influencing factors was estimated by gray correlation degree. The five most important influencing factors were chosen to construct the BP neural network to estimate the drainage. To ascertain the best structure of BP neural network, the uniform design was used. The results of estimation show that BP neural network can estimate farmland drainage accurately and the largest relative error is only –2.45%.
刘延锋、靳孟贵、曹英兰
农业科学技术发展农田水利工程
BP神经网络,均匀设计,灰色关联度,焉耆盆地
BP neural network uniform designgray correlation degreeYanqi Basin
刘延锋,靳孟贵,曹英兰.BP神经网络在焉耆盆地农田排水量估算中的应用[EB/OL].(2004-11-15)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200411-56.点此复制
评论