|国家预印本平台
首页|Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces

Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces

Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces

来源:Arxiv_logoArxiv
英文摘要

Let $A$ be a positive bounded operator on a Hilbert space $\big(\mathcal{H}, \langle \cdot, \cdot\rangle \big)$. The semi-inner product ${\langle x, y\rangle}_A := \langle Ax, y\rangle$, $x, y\in\mathcal{H},$ induces a seminorm ${\|\cdot\|}_A$ on $\mathcal{H}$. Let ${\|T\|}_A,\ w_A(T),$ and $c_A(T)$ denote the $A$-operator seminorm, the $A$-numerical radius, and the $A$-Crawford number of an operator $T$ in the semi-Hilbertian space $\big(\mathcal{H}, {\|\cdot\|}_A\big)$, respectively. In this paper, we present some seminorm inequalities and equalities for semi-Hilbertian space operators. More precisely, we give some necessary and sufficient conditions for two orthogonal semi-Hilbertian operators satisfy Pythagoras' equality. In addition, we derive new upper and lower bounds for the numerical radius of operators in semi-Hilbertian spaces. In particular, we show that \begin{align*} \frac{1}{16} {\|TT^{\sharp_{A}} + T^{\sharp_{A}}T\|}^{2}_{A} + \frac{1}{16}c_{A}\Big(\big(T^2 + (T^{\sharp_{A}})^2\big)^2\Big) \leq w^4_{A}(T) \leq \frac{1}{8} {\|TT^{\sharp_{A}} + T^{\sharp_{A}}T\|}^{2}_{A} + \frac{1}{2}w^2_{A}(T^2), \end{align*} where $T^{\sharp_A}$ is a distinguished $A$-adjoint operator of $T$. Some applications of our inequalities are also provided.

A. Zamani、M. S. Moslehian、Q. Xu

10.1016/j.laa.2020.01.015

数学

A. Zamani,M. S. Moslehian,Q. Xu.Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces[EB/OL].(2019-10-08)[2025-08-02].https://arxiv.org/abs/1910.03391.点此复制

评论