|国家预印本平台
首页|基于BiS2的超导体配对对称性

基于BiS2的超导体配对对称性

Pairing symmetry in BiS2-based superconductors

中文摘要英文摘要

利用一个两轨道模型,并计入同格点及最近邻格点轨道内吸引作用V0和V1,本文研究了基于BiS2的超导体的配对对称性。在做平均场近似和求解自洽方程后,得到了配对对称性的相图。根据V0和V1的取值,该模型中会出现三种可能的配对对称性。它们分别是:各向同性的s波[$Delta_{mathbf{k}}=Delta_{s}$];各向异性的s波[$Delta_{mathbf{k}}=Delta_{s}+ rac{Delta_{xs}}{2}(cos k_{x}+cos k_{y})$];以及d波[$Delta_{mathbf{k}}= rac{Delta_{d}}{2}(cos k_{x}-cos k_{y})$]。进一步地,态密度对于这三种不同的对称性显现出不同的行为,因此可被用来区分出这三种配对对称性。

he possible pairing symmetries for BiS2-based superconductors is investigated by using a minimal two-orbital model with onsite and nearest-neighbor intraorbital attractions V0 and V1, respectively. By using the mean-field approximation and solving the self-consistent equations, the phase diagram of the pairing symmetry is obtained. It is shown that the model allows three possible pairing symmetries, depending on the values of $V_{0}$ and $V_{1}$: the isotopic $s-$wave pairing [$Delta_{mathbf{k}}=Delta_{s}$], the anisotropic $s-$wave pairing [$Delta_{mathbf{k}}=Delta_{s}+ rac{Delta_{xs}}{2}(cos k_{x}+cos k_{y})$] and the $d-$wave pairing [$Delta_{mathbf{k}}= rac{Delta_{d}}{2}(cos k_{x}-cos k_{y})$]. Furthermore the density of states for these pairing symmetries exhibit different behaviors which can be used to distinguish them.

高绎

物理学

基于BiS的超导体配对对称性态密度

BiS-based superconductorspairing symmetrydensity of states

高绎.基于BiS2的超导体配对对称性[EB/OL].(2013-03-25)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201303-818.点此复制

评论