|国家预印本平台
首页|尺度无关的级联卷积神经网络人脸检测算法

尺度无关的级联卷积神经网络人脸检测算法

中文摘要英文摘要

卷积神经网络在进行图片处理时需要输入固定尺寸大小的图片,该限制会导致原图在放缩过程中损失大部分信息。另外,目前人脸检测算法多用单一结构网络进行特征提取,这就使得算法的泛化能力较弱。针对以上两个问题,提出了一种将级联卷积神经网络与空间金字塔池化相结合的人脸检测算法。该方法将三级卷积神经网络模型连接起来,其中三级神经网络模型之间各不相同,结构从简单到复杂,在不同层次的神经网络上提取不同的人脸特征并筛选图片,完成对图片中人脸区域的检测。同时,在每级网络层次中加入空间金字塔池化层,这种池化策略无须固定尺寸大小的输入,增加了模型输入的尺寸选择。在标准人脸数据集中,该方法相对于传统方法实现了模型的多尺度输入,提升了检测的性能,并降低了检测人脸的时间。

Since the convolution neural network needs to input a fixed size image when performing image processing, this will lead to the loss of most of the original information in the scaling process. In addition, the feature extraction of images will not be put in place when the network has only one structure. To solve the above two problems, this paper presented a face detection algorithm combining cascade convolution neural network and spatial pyramid pooling. In this method, it cascaded three different convolution neural network models, the structure of which were from simple to complex, and extracted different face features at different levels to complete the detection of the face areas of images. At the same time, it added the pyramid pool at each level of the network, and this pooling strategy did not require a fixed size input, increasing dimension selection of model input. Compared with the traditional method, this method realizes the multi-scale input of the model, improves the detection performance, and reduces the time of face detection in the standard face data set.

郑成浩、周勇、刘兵

10.12074/201805.00351V1

计算技术、计算机技术

级联卷积神经网络空间金字塔池化人脸检测

郑成浩,周勇,刘兵.尺度无关的级联卷积神经网络人脸检测算法[EB/OL].(2018-05-18)[2025-08-05].https://chinaxiv.org/abs/201805.00351.点此复制

评论