基于最小二乘支持向量机的时间序列模型及油气管线点腐蚀损伤行为的预测
he Time Series Analysis Model Based on Least Square Support Vector and Its Application in Prediction of Pitting Corrosion Behaviour for Oil-gas Pipeline
点腐蚀常常存在于油气管线中,很容易造成管线穿孔或泄漏事故。因此,对其腐蚀深度扩展行为进行预测具有非常重要的意义。本文利用最小二乘支持向量机(LS-SVM)建立了油气管线内部点腐蚀深度时间序列预测模型。针对LS-SVM模型参数优化过程十分复杂的情况,在标准粒子群优化(PSO)算法的基础上,引入均匀设计、新的自适应惯性权重和新的速度更新公式这三种进化策略,提出了一种混合粒子群优化(HPSO)算法来改善全局寻优。仿真实验显示:HPSO算法具有更强的搜索能力和更高的收敛精度。工程实例应用结果表明:与GM(1,1)模型、自回归(AR)模型和BP神经网络(BP-NN)模型相比,LS-SVM模型的预测性能更好,为开展管线剩余寿命预测提供理论基础。
he pitting corrosion are usually existed in oil and gas pipelines, and the corrosion is easily to cause perforation or leak accident of the pipeline. Therefore, it is very significant to study the prediction of depth propagation behaviour. In this paper, based on the Least square support vector machine(LS-SVM), a time series analysis model is proposed to predict the pitting corrosion depth for oil and gas pipeline. As for the complex situation of parameter optimization process in LS-SVM model, a new Hybrid particle swarm optimization(HPSO) is presented by inducing of uniform design method, novel self-adaptive inertia weight and novel velocity updating strategy to improve the global optimization ability. The simulation experiment indicates that HPSO has more stronger search capability and more higher convergence precision. The results of a engineering case application show that LS-SVM model performs a better prediction performance compared with GM(1,1) model, auto-regrssion(AR) model and BP neural network model.
程光旭、李珺、范志超
石油天然气储运自动化技术、自动化技术设备计算技术、计算机技术
化工机械与设备油气管线腐蚀最小二乘支持向量机
hemical process machinery and equipmentpitting corrosionleast square support vector
程光旭,李珺,范志超.基于最小二乘支持向量机的时间序列模型及油气管线点腐蚀损伤行为的预测[EB/OL].(2012-01-17)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/201201-618.点此复制
评论