(2+1)维广义浅水波方程的Lax对,Darbuox变换和孤子解
Lax pair, Darboux transformation and soliton solutions for the (2+1)-dimensional generalization of shallow water wave equation
利用奇异流形方法构造了(2+1)维广义浅水波方程的Lax和相关的Darbuox变换,通过使用得到的Darbuox变换,得到了该方程的一次和二次迭代解以及一个包含任意函数的N孤子解,解的相关的性质被研究,这些解对于解释浅水波的传播将有所帮助。
In this paper, the (2+1)-dimensional generalization of shallow water wave equation which can be used to describe the propagation of ocean waves is analytically investigated. With the aid of symbolic computation, we prove that the (2+1)-dimensional generalization of shallow water wave equation has the Painlev'e property under a certain condition and apply the singular manifold method to constructing its Lax pair. Based on the obtained Lax representation, the Darboux transformation is constructed. The first iterated solution, second iterated solution and an N-soliton solution with an arbitrary function are derived with the resulting Darboux transformation. Relevant properties are graphically illustrated, which might be helpful to understanding the propagation processes for ocean waves on shallow waters.
闻小永、高以天
数学物理学
(2+1)维广义浅水波方程奇异流形方法Lax对arboux变换符号计算
NThe (2+1)-dimensional generalization of shallow water wave equationthe singular manifold methodLax pairDarboux transformationSymbolic computation
闻小永,高以天.(2+1)维广义浅水波方程的Lax对,Darbuox变换和孤子解[EB/OL].(2012-05-18)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201205-309.点此复制
评论