|国家预印本平台
首页|基于自适应马尔科夫矩阵的IMMPF目标跟踪

基于自适应马尔科夫矩阵的IMMPF目标跟踪

daptive Markov Transition Matrix based Target Tracking with IMMPF

中文摘要英文摘要

本文利用基于后验概率的自适应马尔可夫转移矩阵研究了以粒子滤波为核心的目标跟踪算法。在滤波器每一次迭代过程的最后,文中采用了两种方法更新下一个迭代过程的自适应马尔科夫转移矩阵,一种是似然比方法,另一种是压缩比方法。为了避免粒子滤波迭代过程中出现的数据异常而引起的失效,文中还设置了马尔科夫转移概率的约束条件。仿真结果表明约束马尔科夫转移概率方法有利于提高基于粒子滤波的交互多模型目标跟踪性能。

his paper uses adaptive markov transition matrix based on the a posteriori probability to study a kind of target tracking algorithm with particle filter as the core. At the end of each filter iteration process, we study two methods to update Markov transition matrix for the next iteration process. One is with the ratio of likelihood function, and the other is with the compress ratio of estimation error. Furthermore, to avoid possible failure resulted from abnormal data during the iteration process; we set the upper bound to constrain Markov transition probability. Simulations show that constrained adaptive Markov transition matrix is beneficial to improve interacting multiple models particle filter results.

汪飞、严东

雷达

1、目标跟踪2、粒子滤波3、马尔科夫矩阵

1.Target tracking2.Particle filtering3. markov transition matrix

汪飞,严东.基于自适应马尔科夫矩阵的IMMPF目标跟踪[EB/OL].(2012-12-31)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201212-1190.点此复制

评论