|国家预印本平台
首页|基于卷积神经网络的人脸性别识别研究与应用

基于卷积神经网络的人脸性别识别研究与应用

Research and Application of Human Face Gender Recognition Based on CNN

中文摘要英文摘要

人脸包含着人类的性别、种族、肤色,年龄等重要信息,如果可以用计算机识别人脸,就可以方便且非接触式地获得大量人类的生物特征。卷积神经网络是人工神经网络的一种,其结构具有局部连接,权值共享和池化采样三大特点,这样的网络结构不但使权值数量减少,使得网络模型复杂度降低,同时对缩放、旋转、平移和其他形变有更好的鲁棒性。本文首先研究了经典Alexnet模型的原理以及其在性别识别的性能,并根据实验结果对Alexnet的激活函数和全连接层进行改进。使得网络可以接受任意大小的输入图片并且提高识别的准确率。?????

Human faces contain important information such as sex, race, color, age, etc. If human faces can be identified by computer, a great deal of human biological characteristics can be obtained conveniently and contactlessly. Convolutional neural network is a kind of artificial neural network whose structure has three characteristics of local connection, weights sharing and pooling sampling. Such a network structure not only reduces the number of weights but also reduces the complexity of the network model, and zooming, rotation, translation, and other deformations have better robustness at the same time. In this paper, the principle of the classical Alexnet model and its performance in gender identification are studied first, then the Alexnet activation function and the full connectivity layer are improved according to the experimental results. Making the network can accept input pictures of any size and improve the recognition accuracy.

耿凯悦、刘晓鸿

计算技术、计算机技术

人工智能卷积神经网络全卷积神经网络性别识别?????

rtificial IntelligenceNNFully Convolutional Neural NetworksGender Recognition?????

耿凯悦,刘晓鸿.基于卷积神经网络的人脸性别识别研究与应用[EB/OL].(2017-11-30)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201711-256.点此复制

评论