一种融入小生境技术的遗传禁忌算法
Hybrid Strategy Based on Genetic Algorithm and Tabu Search Importing Niches
针对遗传算法在全局优化问题中容易出现早熟和收敛速度慢的问题,本文根据遗传算法和禁忌搜索算法自身的特点, 分析两者的优势和不足, 提出了一种融入小生境技术的遗传禁忌算法(NGATS)。该算法采用融入了小生境技术的遗传算法作全局搜索, 用禁忌搜索算法作局部搜索,可以加快收敛速度, 同时可以抑制早熟现象,避免过早收敛到局部最优。实验结果表明,该算法能很好的抑制早熟收敛,同时在计算速度和计算结果方面都有所改进。
Genetic algorithm and Tabu search algorithm are powerful tools to solve the complicated large-scale optimization problems. To deal with the prematurity and low convergence speed when the genetic algorithm being used for global optimization, through comprehensive contrast and comparison between the above two algorithm, a hybrid optimization algorithm was introduced to improve the local search ability of Genetic algorithm. In this algorithm, in order to speed up convergence speed and get satisfied results, Tabu search algorithm was used for local search, Genetic algorithm was applied for global search. Meanwhile niche was imported to control prematurity and to avoid converging to local optimum. The test results show that both calculating speed and output are improved.
陈友文、李智勇
计算技术、计算机技术
遗传算法禁忌搜索小生境局部搜索全局优化
Genetic algorithmabu search algorithmnichelocal searchglobal optimization
陈友文,李智勇.一种融入小生境技术的遗传禁忌算法[EB/OL].(2009-07-27)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/200907-580.点此复制
评论